To analyze this data, I pulled the aggregate CSV file from https://ssa.gov/oact/babynames/.

import pandas as pd
import os
import glob

df = pd.read_csv("agg.csv", names=["index1", "name", "sex", "occurences", "yearofbirth"])
df = df.drop(['index1'], axis=1)

Then, I ran a preliminary analysis on the most common household tech products that had unique names. I excluded names that could have many origins (like Alexa or Echo).

tempdf = df[(df.name=="Siri") | (df.name=="Cortana") | (df.name=="Kindle")]
tempdf.groupby(["name"]).count()['occurences']
name
Cortana    15
Kindle     51
Siri       77
Name: occurences, dtype: int64

I zoomed into girls named Kindle and charted out the number of occurences per year of birth.

tempdf = df[(df.name=="Kindle") & (df.sex=="F")]
tempdf
name sex occurences yearofbirth
628404 Kindle F 5 1964
718475 Kindle F 7 1971
751282 Kindle F 5 1973
799770 Kindle F 6 1976
837255 Kindle F 5 1978
875210 Kindle F 5 1980
892000 Kindle F 7 1981
910118 Kindle F 9 1982
931133 Kindle F 7 1983
947415 Kindle F 13 1984
990687 Kindle F 7 1986
1008865 Kindle F 11 1987
1059555 Kindle F 5 1989
1078745 Kindle F 9 1990
1129684 Kindle F 8 1992
1152413 Kindle F 12 1993
1178001 Kindle F 13 1994
1202241 Kindle F 19 1995
1229122 Kindle F 16 1996
1258334 Kindle F 10 1997
1288386 Kindle F 7 1998
1313674 Kindle F 10 1999
1342609 Kindle F 10 2000
1370378 Kindle F 14 2001
1404795 Kindle F 8 2002
1434580 Kindle F 9 2003
1463384 Kindle F 13 2004
1497494 Kindle F 10 2005
1526831 Kindle F 17 2006
1564101 Kindle F 11 2007
1595269 Kindle F 20 2008
1629469 Kindle F 24 2009
1664457 Kindle F 22 2010
1697111 Kindle F 31 2011
1732426 Kindle F 22 2012
1766554 Kindle F 20 2013
1800676 Kindle F 17 2014
1833161 Kindle F 20 2015
1866532 Kindle F 19 2016
1905264 Kindle F 8 2017
1934607 Kindle F 12 2018
1967350 Kindle F 11 2019
2004347 Kindle F 6 2020
2033196 Kindle F 8 2021
2067673 Kindle F 6 2022
import plotly.express as px

fig = px.line(tempdf, 
                 x="yearofbirth", 
                 y="occurences",
                 color_discrete_sequence=["#a11D83"],
                 template="plotly_white",
                #  opacity=1,
                #  height=1200,
                 )


import plotly.graph_objects as go

# fig = go.Figure(data=go.Scatter(x=tempdf["yearofbirth"], y=tempdf["occurences"]))
fig.show()
fig.write_image("./babynames.jpeg")

I finished the map with context on major Kindle release dates in Illustrator.